
A SHORT HISTORY OF THE PHOTON

Fulvio Parmigiani

Newton wrote in 1704: “Do not Bodies and Light act mutually upon one another; that is to 
say, Bodies upon Light in emi8ng, reflec:ng, refrac:ng and inflec:ng it, and Light upon
Bodies for hea:ng them, pu8ng their parts into a vibra:ng mo:on wherein heat consists?” 
[Op3cks]



AN INTERESTING PATH



1.3 Concept Formation as Layered Semantic Accretion 7

Fig. 1.1 Research strands along the way to the light-quantum hypothesis. This diagram cannot
be more than a schematic and greatly simplified illustration of the complex superpositions and
increasingly interconnected research strands that had previously been independent. During periods
in which many strands are involved, such as here around 1905 and 1925, nonlinear, if not ‘turbulent’
phases form. Abbreviation key: Ke: Kepler, Ne: Newton, Leb: Lebedew, NiHu: Nichols and Hull,
Le: Lenard, Th: J.J. Thomson, Pl: Planck, Ei: Einstein, Eh: Ehrenfest, Na: Natanson, Br: Louis
de Broglie, He: Heisenberg and Sch: Schrödinger. Author’s modification of the time line in Hund
(1984) p. 20

The designation “convolutions” (as folds of meaning) is perhaps more appropri-
ate than the geological metaphor of semantic superpositions. Ivor Grattan Guiness
(∗1941) coined it in what he actually intended as a response to the never-ending
debate about evolution vs. revolution, but it also fits the formation of terms and
concepts.15

15See Grattan-Guiness (1990).

Credit: Klaus Hentschel Photons. The History and Mental Models of Light Quanta
Springer 2018 

Abbrevia:on key: Ke: Kepler, Ne: Newton, Leb: Lebedew, NiHu: Nichols and Hull, Le: 
Lenard, Th: J.J. Thomson, Pl: Planck, Ei: Einstein, Eh: Ehrenfest, Na: Natanson, Br: Louis de 
Broglie, He: Heisenberg and Sch: Schrödinger. 

THE ROAD MAP



His query in Op#cks (added to the second edi2on in 1706) also reads: 
Are not the Rays of Light very small Bodies emi;ed from shining Substances? For 
such Bodies will pass through uniform Mediums in right Lines without bending into 
the Shadow, which is the Nature of the Rays of Light. They will also be capable of 
several Proper#es, and be able to conserve their Proper#es unchanged in passing 
through several Mediums, which is another condi#on of the Rays of Light. 

As we have seen in the first lecture, the idea that the 
light is made of particles (or atoms of light) as 
developed by Isaac Newton (1642–1727) represents 
the first “physical” model about this issue. 
However, Newton, in his early papers published in the 
Philosophical Transactions of the Royal Society from 
1672 on, was careful not to reveal his basic corpuscular 
notion of light. 
In his “Mathematical principles of natural philosophy”, 
for example, he concludes that light refraction is 
caused by the stronger attraction of particles of light to 
a denser medium. 

THE NEWTON’S PARTICLES OF LIGHT



The speed of light with different colors.
Newton himself had shown in his New Theory of Light and Colors from 1672 
that components of light of different colors manifest different angles of 
refrac9on. This seemed to suggest the assump9on that the variously colored 
components of light would propagate at different veloci9es through the same 
medium.

Red component of the spectrum was the least refrac9ve, according to his 
theory, it actually ought to be the most rapidly moving one. 

That is why Newton asked the Astronomer Royal, John Flamsteed (1646–
1719), in 1691 about his observaGons of Jupiter’s moons. Did the terrestrial 
observer first perceive the red component of the light right aDer their transits 
behind the planet and the blue component only aDerwards? Flamsteed’s
nega8ve reply dissuaded Newton of the hypothesis that red light must be 
faster than blue light. He then suspected that the different color-dependent 
degrees of refrangibility either came from differing sizes for his light globuli or 
differing masses. 

LIGHT AND COLORS



COLORS, SPEED OF LIGHT
and 

SPACE

WHAT IS THE SPACE?
GEOMETRY OR PHYSICS?



4.1 Newton’s “Globuli of Light” 95

Fig. 4.1 Newton’s “globulus of light” 1664–65 in Questiones quaedam Philosophiae, fol. 104v,
MS Add. 3996, Cambridge University Library, Cambridge, UK. Reprinted by permission

aether flow around it. A compression zone depicted on the right-hand side poses due
resistance. Newton presumed that the turbulent zone on the left-hand side generated
a kind of push ahead, “by pressing on the back side ... consequently helping it
forward.”4

A later stage in the development of this particulate theory of light is apparent in
a paper Newton published in 1675 as well as in his Principia from 1687. In book I,
section XIV he offered a physical explanation for refraction based on the assumption
that light is a stream of material particles. The refraction of light as it passes from one
medium into another of different optical density or index of refraction n, had long
been known. Ptolemy and Ibn al-Haytham had already examined it by experiment.
Newton interpreted it as the attraction of corpuscles of light to the denser (hencemore
massive) medium. Although Newton had no way of knowing the scale or velocity
of these hypothetical corpuscles of light, he could still draw conclusions about the
curvature of their trajectory toward the medium of greater density.5

The law of refraction that Ptolemy and Kepler had looked for in vain was dis-
covered byThomasHarriot (1560–1621) andWillebrord vanRoijenSnel (latinized as
Snellius 1580–1626) and first published by René Descartes (1596–1650).6

Newton was able to derive the law by assuming that the component of the light
corpuscle’s propagation velocity parallel to the refracting surface vpar remains
unchanged whereas the transversal component at the transition into the optically

4The above quotations are taken fromNewton’sQuestiones, dated 1664–65 in the critical edition of
this notebook ed. by J.E. McGuire and Martin Tamny, Cambridge Univ. Press, 1983, pp. 384–385.
5For details see Newton (1675a) pp. 256ff., resp., (1675b) pp. 186ff.; furthermore Hall (1993),
Sepper (1994), Shapiro (2009).
6See Hentschel (2001) on Snel’s discovery of the law of refraction.
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Albeit, at this stage Newton’s “projec6le model” of light is formulated as a 
“query,” not as a thesis. By assuming the existence of “minimally small bodies” 
he was just exploi6ng a mathema6cal analogy between the propaga6on of such 
6niest par6cles of light and small material bodies, without having to make any 
posi6ve statement about “whether they are bodies or not. 

QUAESTIONES QUAEDAM PHILOSOPHICAE*

Quaestiones quaedam philosophicae (Certain philosophical questions) is the name given to a set of notes that Isaac Newton kept for himself 
during his earlier years in Cambridge. Apart from the light it throws on the formation of his own agenda for research, the major interest in 
these notes is the documentation of the unaided development of the scientific method in the mind of Newton, whereby every question is 
put to experimental test. 

https://en.wikipedia.org/wiki/Isaac_Newton


It was later confirmed that the propaga3on velocity «c» in a free space was
constant and independent of the frequency, not only for all spectral
components of light but also of other transversal waves (such as, thermal
radia3on, ultraviolet light, x-rays, γ-rays, and radio waves), all of which
were interpreted according to Maxwell’s theory as forms of 
electromagne3c radia3on differing only in wavelength or frequency. 

The speed of light in the Galilean rela2vity 
Thomas Blair (1748–1828), to the Royal Society of London in 1786: 
«It appears more probable, that when light is emi4ed by a body in mo7on,  
the velocity of the par7cles projected in the direc7on of the mo7on will
exceed the velocity of those, which are projected in an opposite direc7on, 
the difference being equal to twice the velocity of the moving body. And the 
same thing ought to take place when bodies reflect light.»

THE SPEED OF LIGHT



A SMALL DETAIL. A BIG MEANNING:
THE PENUMBRA



PENUMBRA



Francesco Maria Grimaldi (2 April 1618 – 28 December 1663) 
was an Italian Jesuit priest, mathema>cian and physicist who
taught at the Jesuit college in Bologna.

DE LUMINE COLORIBUS ET IRIDE

https://en.wikipedia.org/wiki/Italians
https://en.wikipedia.org/wiki/Jesuit
https://en.wikipedia.org/wiki/Mathematician
https://en.wikipedia.org/wiki/Physicist
https://en.wikipedia.org/wiki/Jesuit
https://en.wikipedia.org/wiki/Bologna


Chris&aan Huygens 14 April 1629 – 8 July 1695), was a 
Dutch mathema=cian, physicist, astronomer and inventor, 
who is widely regarded as one of the greatest scien=sts of 
all =me and a major figure in the scien=fic revolu=on. In 
physics, Huygens made groundbreaking contribu=ons in 
op=cs and mechanics, while as an astronomer he is chiefly 
known for his studies of the rings of Saturn and the 
discovery of its moon Titan. As an inventor, he improved 
the design of telescopes and invented the pendulum 
clock, a breakthrough in =mekeeping and the most 
accurate =mekeeper for almost 300 years. Huygens was 
an outstanding mathema=cian and accomplished 
physicist, being the first to idealize a physical problem by a 
set of parameters then analyze it mathema=cally 
(Horologium Oscillatorium), and the first to fully 
mathema=ze a mechanis=c explana=on of unobservable 
physical phenomena (Traite de la Lumiere). For these 
reasons, he has been called the first theore=cal physicist
and one of the founders of modern mathema=cal physics.

THE RISE OF THE LIGHT WAVE
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R. Feynman defines the generalized principle in the following way: 
"Actually Huygens’ principle is not correct in op4cs. It is replaced by Kirchoff’s
modifica4on which requires that both the amplitude and its deriva4ve must be 
known on the adjacent surface. This is a consequence of the fact that the wave 
equa4on in op4cs is second order in the 4me. The wave equa4on of quantum 
mechanics is first order in the 4me; therefore, Huygens’ principle is correct for 
maGer waves, ac4on replacing 4me."

258 Chapter 10 Diffraction

tion starting from Maxwell’s equation. The diffraction formula is based on scalar
diffraction theory, which ignores polarization effects. In some situations, ignor-
ing polarization is benign, but in other situations, ignoring polarization effects
produces significant errors. These issues as well as the approximations leading to
scalar diffraction theory are discussed in section 10.2.

10.1 Huygens’ Principle as Formulated by Fresnel

Figure 10.1 Wave fronts depicted
as a series of Huygens’ wavelets.

In this section we discuss the calculus of summing up the contributions from the
many wavelets originating in an aperture illuminated by a light field. Each point
in the aperture is thought of as a source of a spherical wavelet.1 In our modern
notation, such a spherical wave can be written as proportional to ei kR /R, where
R is the distance from the source. As a spherical wave propagates, its strength
falls off in proportion to the distance traveled and the phase is related to the
distance propagated, similar to the phase of a plane wave. It should be noted that
by choosing k, we consider only a single wavelength of light (i.e. one frequency).

A spherical wave of the form ei kR /R technically does not satisfy Maxwell’s
equations (see P10.4). For one thing, it utterly fails near R = 0. However, if R is
large compared to a wavelength, this spherical wave starts to resemble actual
solutions to Maxwell’s equations, as will be examined in the next section. It is
within this regime that the diffraction formula derived here is successful.

Consider an aperture or opening in an opaque screen located at the plane
z = 0. Let the aperture be illuminated with a light field distribution E(x 0, y 0, z = 0)
within the aperture. Then for a point (x, y, z) lying somewhere after the aperture
(z > 0), the net field is given by adding together the contribution of wavelets
emitted from each point in the aperture.

Figure 10.2

Each spherical wavelet is assigned the strength and phase of the field at the
point where it originates. Mathematically, this summation takes the form

E(x, y, z) =° i
∏

œ

aperture

E(x 0, y 0,0)
ei kR

R
d x 0d y 0 (10.1)

where
R =

q
(x °x 0)2 + (y ° y 0)2 + z2 (10.2)

is the radius of each wavelet as it individually intersects the point (x, y, z). We will
call (10.1) the Huygens-Fresnel2 diffraction formula, although Fresnel is credited
with this integral formulation. The factor °i /∏ in front of the integral in (10.1)
ensures the right phase and field strength (not to mention correct units). Justifica-
tion for this factor is given in section 10.3 and in appendix 10.A. To summarize,

1For simplicity, we use the term ‘spherical wave’ in this book to refer to waves of the type
imagined by Huygens (i.e. of the form ei kR /R). There is a different family of waves based on
spherical harmonics that are also sometimes referred to as spherical waves. These waves have
angular as well as radial dependence, and they are solutions to Maxwell’s equations. See J. D.
Jackson, Classical Electrodynamics, 3rd ed., pp. 429–432 (New York: John Wiley, 1999).

2M. Born and E. Wolf, Principles of Optics, 7th ed., p. 414 (Cambridge University Press, 1999).

A MENTAL MODEL



In May of 1801, while pondering some of Newton’s 
experiments, Young came up with the basic idea for the 
now-famous double-slit experiment to demonstrate the 
interference of light waves. The demonstra-on would 
provide solid evidence that light was a wave, not a 
par-cle. 

In the first version of the experiment, Young actually 
didn’t use two slits, but rather a single thin card. He 
covered a window with a piece of paper with a -ny hole 
in it. A thin beam of light passed through the hole. He 
held the card in the light beam, spliBng the beam in 
two. Light passing on one side of the card interfered with 
light from the other side of the card to create fringes, 
which Young observed on the opposite wall. 

Thomas Young
1773-1829)

AN INCREDIBLE EXPERIMENT



(a) The path difference is given by sindδ θ= . When L y , � θ  is small and we can 
make the approximationsin tan /y Lθ θ≈ = . Thus,  
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(c) Since the path difference is an integer multiple of the wavelength, the intensity at 
point P is a maximum.  
 
 
14.3 Intensity Distribution 
 
Consider the double-slit experiment shown in Figure 14.3.1.  
 

 
 

Figure 14.3.1 Double-slit interference 
 
The total instantaneous electric field E

G
at the point P on the screen is equal to the vector 

sum of the two sources: . On the other hand, the Poynting flux S is 
proportional to the square of the total field:  
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Taking the time average of S, the intensity I of the light at P may be obtained as: 
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Figure 14.2.5 (a) Destructive interference. (b) Constructive interference. 
 
To locate the positions of the fringes as measured vertically from the central point O, in 
addition to L , we shall also assume that the distance between the slits is much 
greater than the wavelength of the monochromatic light, d

d�
λ� . The conditions imply 

that the angle θ  is very small, so that  
 

 sin tan y
L

θ θ≈ =  (14.2.7) 

 
Substituting the above expression into the constructive and destructive interference 
conditions given in Eqs. (14.2.5) and (14.2.6), the positions of the bright and dark fringes 
are, respectively, 
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d
λ
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and 
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2d
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d
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 (14.2.9) 

 
 
Example 14.1: Double-Slit Experiment 
 
Suppose in the double-slit arrangement, 0.150mm, d = 120cm, L = 833nm,λ =  and 

.  2.00cmy =
 
(a) What is the path difference δ  for the rays from the two slits arriving at point P? 
 
(b) Express this path difference in terms of λ . 
 
(c) Does point P correspond to a maximum, a minimum, or an intermediate condition? 
 
Solutions: 
 

 14-7

Young also used his data to calculate the wavelengths of different colors of light, coming 
very close to modern values.  In November 1801 Young presented his paper, @tled “On 
the theory of light and color” to the Royal Society. In that lecture, he described 
interference of light waves and the slit experiment. He also presented an analogy with 
sound waves and with water waves, and even developed a demonstra@on of of the 
interference of waves travelling  in a tank to show interference paIerns in water.

CONFORMING THAT LIGH IS A WAVE



A SCIENTIFIC TRIAL



In 1817, the corpuscular theorists at the French Academy of Sciences which included 

Siméon Denis Poisson were so confident that they set the subject for the next year's prize 

as diffracFon, being certain that a parFcle theorist would win it.

AugusFn-Jean Fresnel submiKed a thesis based on wave theory and whose substance 

consisted of a synthesis of the Huygens' principle and Young's principle of interference. 

Poisson studied Fresnel's theory in detail and of course looked for a way to prove it 

wrong being a supporter of the parFcle theory of light. 

Poisson thought that he had found a flaw when he argued that a consequence 

of Fresnel's theory was that there would exist an on-axis bright spot in the 

shadow of a circular obstacle blocking a point source of light, where there 

should be complete darkness according to the parFcle-theory of light. Fresnel's 

theory could not be true, Poisson declared: surely this result was absurd. (The 

Fresnel spot is not easily observed in everyday situaFons, because most 

everyday sources of light are not good point sources. In fact it is readily visible in 

the defocused telescopic image of a moderately bright star, where it appears as 

a bright central spot within a concentric array of diffracFon rings.) 

A SCIENTIFIC TRIAL
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However, the head of the commi1ee, Dominique-François-Jean Arago thought it was 
necessary to perform the experiment in more detail. He molded a 2-mm metallic disk to 
a glass plate with wax. To everyone's surprise he succeeded in observing the predicted 
spot, which convinced most scienGsts of the wave-nature of light. In the end, Fresnel 
won the compeGGon. 
A"er that, the corpuscular theory of light was vanquished, not to be heard of again :ll 
the 20th century. Arago later noted that the phenomenon (which is some:mes called 
the Arago spot) had already been observed by Joseph-Nicolas Delisle and Giacomo F. 
Maraldi a century earlier. 

Augus:n-Jean Fresnel
(1788–1827)

THE FERSNEL’S  TRIUMPH 

TINY LIGHT SPOT
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CHARGES MOVING IN THE SPACE-TIME:
THE SPECIAL RELATIVITY



These ideas were unified in 1862, when Maxwell (1831-1879) 
published “On Physical Lines of Force,” in which he established that 
electromagnetic radiation propagates in a vacuum at the speed of 
light, and concluded light is a form of electromagnetic radiation. He 
remarked, “we can scarsely avoid the conclusion that light consists 
in the transverse undulations of the same medium which is the 
cause of electric and magnetic phenomena.”

made Young’s arguments particularly convincing is the fact that the double-slit experiment can be
performed with water waves in a ripple tank, and the same interference and di↵raction e↵ects are
observed.

Roughly at the same time, Augustin-Jean Fresnel (1788-1827) was working to develop a mathe-
matical framework with which to calculate di↵raction patterns. He modified Huygens’s principle
and provided a construction that allowed him to explain di↵raction. He also extended the wave
theory of light to other optical phenomena. When submitted to the French Academy of Sciences,
his work was initially rejected by Simeon Poisson (1781-1840) on the grounds that his construc-
tions predicted an on-axis bright spot on the shadow of a circular obstacle blocking a point source
of light. Then François Arago (1786-1853) actually performed the experiment and observed the
predicted spot. This spot is now referred to as an Arago spot, or sometimes a Frensel spot,
or even (bizarrely) a Poisson spot (see Fig. 5). Fresnel is also is credited with proposing, in
1827, that light only has a transverse component, as an explanation of the polarization of light
(when waves vibrate along a single plane perpendicular to the direction of propagation). In 1845,
Michael Faraday (1791-1867) discovered experimentally that the plane of polarization of polarized
light rotates when an external magnetic field is present. This is called Faraday rotation or the
Faraday e↵ect, and its discovery was key in establishing a link between electromagnetism and
light.

These ideas were unified in 1862, when James Clerk Maxwell (1831-1879) published “On Physical

Lines of Force,” in which he established that electromagnetic radiation propagates in a vacuum
at the speed of light, and concluded light is a form of electromagnetic radiation. He remarked,
“we can scarely avoid the conclusion that light consists in the transverse undulations of the same

medium which is the cause of electric and magnetic phenomena.” Building on Maxwell’s work, and
on advances in the theory of partial di↵erential equations (PDEs) made by George Green (1793-
1841) and Hermann von Helmholtz (1821-1894), Gustav Kirchho↵ (1824-1887) showed that Young’s
and Fresnel’s work could be deduced as a suitable approximation of the Fresnel-Kirchho↵ integral
formula. His deduction came to be known as Kirchho↵ ’s theory of di↵raction or the Fresnel-

Kirchho↵ theory of di↵raction. Finally, in 1896 Arnold Sommerfeld (1868-1951) published
“Mathematical Theory of Di↵raction.” He developed in the book a systematic study of di↵raction
of waves by formally reducing it to the study of a boundary value problem in mathematical physics.
The next year John W. Strutt (Lord Rayleigh) (1842-1919) published “On the passage of waves

through apertures in plane screens,” in which he examined the consequences of imposing di↵erent
boundary conditions on the solutions to the Helmholtz equation.

4 Mathematical preliminaries

To describe light propagation, we use Maxwell’s equations. When there are no sources (i.e. charge
density and current density equal to 0), they reduce to

div B = r · B = 0 (Gauss’s flux theorem)

div E = r · E = 0 (Gauss’s law for magnetism)

curl E = r⇥ E = �@B

@t
(Faraday’s law)

curl B = r⇥ B =
1

c2
@E

@t
, (Ampère’s law)

5

(a) experimental setup

(b) numerical simulation (c) experimental observation

Figure 5: The Arago spot. Its presence can be explained by Huygen’s principle: All points on the
boundary of the circular obstacle are equidistant from the circle’s center, projected onto the observational
plane. There is then constructive interference from the secondary sources on this boundary, from which
light is suggested to propagate spherically.

where c is the speed of light in a vacuum. First note that

curl curl E = � @

@t
curl B = � 1

c2
@2E

@t2
.

Then, using the identity
curl curl E = r div E � �E,

we conclude

�E =
1

c2
@2E

@t2
= 0.

Since this equation decouples the evolution of the three components of the field, we can solve for
each component independently. We will denote the chosen component by E, and we look to solve
the scalar wave equation:

�E � 1

c2
@2E

@t2
= 0.

7

James Clerk Maxwell 
(1831-1879)

THE FIRST CONSISTEN SYNTHESIS





Building on Maxwell’s work, and on advances in the theory of par;al differen;al equa;ons 
made by George Green (1793- 1841) and Hermann von Helmholtz (1821-1894), Gustav 
Kirchhoff (1824-1887) showed that Young’s and Fresnel’s work could be deduced as a 
suitable approximaJon of the Fresnel-Kirchhoff integral formula. His deducJon came to 
be known as Kirchhoff’s theory of diffracJon or the Fresnel- Kirchhoff theory of 
diffracJon. 
Finally, in 1896 Arnold Sommerfeld (1868-1951) published “MathemaJcal Theory of 
DiffracJon.” He developed in the book a systema;c study of diffrac;on of waves by 
formally reducing it to the study of a boundary value problem in mathema;cal physics. 
The next year John W. StruY (Lord Rayleigh) (1842-1919) published “On the passage of 
waves through apertures in plane screens,” in which he examined the consequences of 
imposing different boundary condi;ons on the solu;ons to the Helmholtz equa;on. (a) geometric prediction (b) rectangular aperture

(c) circular aperture (d) triangular aperture

Figure 3: Di↵raction patterns. A light source is placed behind a small aperture within a thin, opaque
surface. (a) Profile of experiment. Geometric optics predicts a linear propagation of light, so that
the pattern seen on the observational plane is just an illumination in the shape of aperture. (b)-
(d) Observed di↵raction patterns with di↵erent shapes of apertures. These results are far from the
predictions of geometric optics.

of light behaving like a wave. In particular, light passing through two apertures produced di↵rac-
tion patterns distinct from those seen when light passed through either individual aperture (see
Fig. 4). These patterns are the consequence of interference, whereby waves superpose in either
a constructive or destructive fashion, resulting in alternating light and dark regions. Part of what
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Figure 10.7

Fresnel developed his diffraction formula (10.1) a half century before Maxwell
assembled the equations of electromagnetic theory. In 1887, Gustav Kirchhoff
demonstrated that Fresnel’s diffraction formula satisfies the scalar Helmholtz
equation. In doing this he clearly showed the approximations implicit in the
theory, and made a slight revision to the formula:
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The factor in square brackets, Kirchhoff’s revision, is known as the obliquity factor.
Here, cos(R, ẑ) indicates the cosine of the angle between R and ẑ. Notice that this
factor is approximately equal to one when the point (x, y, z) is chosen to be in
the forward direction; we usually study diffraction under this circumstance. On
the other hand, the obliquity factor equals zero for fields traveling in the reverse
direction (i.e. in the °ẑ direction). This fixes a problem with Fresnel’s version of
the formula (10.1) based on Huygens’ wavelets, which suggested that light could
as easily diffract in the reverse direction as in the forward direction

In honor of Kirchhoff’s work, (10.10) is referred to as the Fresnel-Kirchhoff
diffraction formula. The details of Kirchhoff’s more rigorous derivation, including
how the factor °i /∏ naturally arises, are given in appendix 10.A. Since the Fresnel-
Kirchhoff formula can be understood as a superposition of spherical waves, it is
not surprising that it satisfies the scalar Helmholtz equation (10.5).

10.3 Fresnel Approximation

Although the Fresnel-Kirchhoff integral looks innocent enough, it is actually
quite difficult to evaluate analytically. Even the Huygens-Fresnel version (10.1)
where the obliquity factor (1+cos(r, ẑ))/2 is approximated as one (i.e. far forward
direction) is challenging. The integration can be challenging even if we choose a
field E

°
x 0, y 0,0

¢
that is uniform across the aperture (i.e. a constant).

Fresnel introduced an approximation4 to his diffraction formula that makes
the integration somewhat easier to perform. The approximation is analogous to
the paraxial approximation made for rays in chapter 9.

Besides letting the obliquity factor be one, Fresnel approximated R by the
distance z in the denominator of (10.10) . Then the denominator can be brought
out in front of the integral since it no longer depends on x 0 and y 0. This is valid to
the extent that we restrict ourselves to small angles:

R ª= z (denominator only; Fresnel approximation) (10.11)

The above approximation is wholly inappropriate in the exponent of (10.10) since
small changes in R can result in dramatic variations in the periodic function ei kR .

4J. W. Goodman, Introduction to Fourier Optics, Sect. 4-1 (New York: McGraw-Hill, 1968).

262 Chapter 10 Diffraction

Figure 10.7

Fresnel developed his diffraction formula (10.1) a half century before Maxwell
assembled the equations of electromagnetic theory. In 1887, Gustav Kirchhoff
demonstrated that Fresnel’s diffraction formula satisfies the scalar Helmholtz
equation. In doing this he clearly showed the approximations implicit in the
theory, and made a slight revision to the formula:

E
°
x, y, z

¢
=° i

∏

œ

aperture

E
°
x 0, y 0,0

¢ ei kR

R

∑
1+cos(R, ẑ)
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DIFFRACTION EXPLAINED



BLACKBODY



netic waves depends on the temperature of the object. At ordinary temperatures, thermal

radiation falls within the infrared portion of the electromagnetic spectrum. As objects are

heated to higher temperatures, the total intensity of radiation emitted over all frequencies

increases, and the frequency distribution of the intensity also changes. The solid curves

in Fig.1 show how the measured radiation intensity depends on frequency and temperature.

Spectral distri-

bution of the intensity of blackbody radiation as a function of frequency for several tem-

peratures. First accurate measurements of RT (⌫) by Lummer and Pringsheim in 1899

There are two important features of these curves:

First, the maximum in the radiation intensity distribution moves to higher frequency

(shorter wavelength) as the temperature increases. This phenomenon is observed in fa-

miliar objects such as in the filament of an incandescent light bulb. As the filament is

heated, it first glow red, then orange, then yellow, and finally, white. It also explains the

di↵erences in color among stars; the hottest stars appear to be nearly white, whereas the

colors of cooler stars can range from red to yellow.

Second, the radiation intensity falls to zero at extremely high frequencies for objects

heated to any temperature.

2

In Fig.3 we compare the predictions of Rayleigh-Jeans equation with experimental data.

The discrepancy is apparent. In the limit of low frequencies, the classical spectrum ap-

proaches the experimental results, but, as the frequency becomes large (towards ultraviolet

region), the theoretical prediction goes to infinity! Experiment shows that the energy den-

sity is always positive. This grossly unrealistic behavior of the prediction of classical theory

at high frequencies is known as ”ultraviolet catastrophe

3 Plank’s theory of Blackbody radiation

In the classical theory, blackbody radiation is modeled as the radiation emitted from os-

cillating charged particles at the object’s surface. These oscillations are produced by the

thermal motions of the charged particles. If we treat each particle as a simple harmonic os-

cillator, then we can easily understand how Planck was able to explain blackbody radiation.

A simple harmonic oscillator is described by a Hooke’s law force

F = �k(x� x0) (6)
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Gustav Robert Kirchhoff 1824-1887)

THE RISE OF A NEW PHYSICS

CLASSICAL THEORY

EXPERIMENTAL 
RESULTS

1500 K



Kirchhoff excluded any dependence on material or form by adding another 
idealiza8on: so typical of his style, he limited his observa8ons to ideal ‘black bodies,’ 
which he described as follows: 

When a cavity is en-rely surrounded by bodies at the same temperature that are 
impenetrable to rays, then every beam of radia-on in the interior of that space 
must, with regard to its quality and intensity, be cons-tuted as if it had emanated 
from a perfectly black body at the same temperature and must therefore be 
independent of the form and nature of those bodies, having been determined by 
the temperature alone. One sees the validity of this assump-on when one 
considers that a beam that has the same form and the opposite direc-on to the 
selected one is en-rely absorbed a>er undergoing the enumerable successive 
reflec-ons inside the imagined bodies. Accordingly, the same luminosity always 
occurs in the interior of an opaque glowing body at a par-cular temperature, 
irrespec-ve of how it is otherwise composed 

[Kirchhoff, Gustav Robert. 1860. Ueber das Verhältnis zwischen dem Emissionsvermögen und dem
AbsorpGonsvermögen der Körper für Wärme und Licht, (a) Annalen der Physik, Leipzig (2) 109: 275–301 & 
pls. II-III; (b) Engl. transl.: On the relaGon between the radiaGng and absorbing powers of different bodies for 
light and heat, Philosophical Magazine, London (4) 20: 1–21; (c) reprinted in Ostwalds Klassiker series, no. 
100, ed. by Max Planck. ]

A DIFFICULT PUZZLE



A"ached to this idealiza/on was the guarantee that the density of the radia/on energy 
r(ν, T ) would be independent of the material. But it also offered the possibility to 
transfer the concept of temperature away from the cavity walls onto the radia/on in its 
vicinity, taking into account the thermal equilibrium between ma"er and radia/on. It 
then made sense to speak of the temperature or entropy of radia/on. 

The problem defined by Kirchhoff one genera/on before was thus reduced to the 
ques/on of what form this dimensionless func/on r(ν, T ) should take for the idealized 
‘blackbody’ at radia/on equilibrium. Einstein described this situa/on in historical 
retrospect, with his characteris/c irony: 

“It would be edifying if the brain ma5er sacrificed by theore9cal physicists on the 
altar of this universal func9on r(n,T) could be put on the scales; and there is no end in 
sight to this cruel sacrifice! What’s more: classical mechanics also fell vic9m to it, and 
one s9ll cannot tell whether Maxwell’s electrodynamic equa9ons will survive the crisis 
that this func9on f has brought about .”

ELECTROMAGNETISM-STATISTICAL MECHANICS-THERMODYNAMICS



Wilhelm Wien, who was co-editor of Annalen
der Physik at the 0me, had been one of the 
first to make a concrete sugges0on regarding 
the form this func0on f (ν, T ) could take

2.1 Planck and Energy Quantization 1900 13

The problem defined by Kirchhoff one generation before was thus reduced to the
question of what form this dimensionless function f (ν, T ) should take for the ide-
alized ‘black body’ at radiation equilibrium. Einstein described this situation in
historical retrospect, with characteristic irony:

It would be edifying if the brain matter sacrificed by theoretical physicists on the altar of
this universal function f could be put on the scales; and there is no end in sight to this cruel
sacrifice! What’s more: classical mechanics also fell victim to it, and one still cannot tell
whether Maxwell’s electrodynamic equations will survive the crisis that this function f has
brought about.15

Wilhelm Wien, who was co-editer of Annalen der Physik at the time, had been one
of the first to make a concrete suggestion regarding the form this function f (ν, T )
could take16:

ρ(ν, T ) = αν3ebν/T .

For a number of years Planck believed that this formula was correct. He attempted
repeatedly to derive it out of fundamental electrodynamic and thermodynamic the-
orems, but it refused to work.17 In 1900 Planck learned from Berlin experimenters
that this formula agreed with their laboratory results to good or very good approxi-
mation only for large ν. It evidently completely failed for small ν. Another formula
fit extremely well for the low-energy end of the spectrum, that is, toward the red,
and even more so in the infrared spectral range. Lord Rayleigh and William Jeans
in England had derived it from Maxwell’s electrodynamics and from statistical
mechanics18:

ρ(ν, T ) = 8πν2

c3
kBT .

Planck heard about this conflict between the two fit formulas when Heinrich Rubens
was visiting him at his home in the Grunewald suburb of Berlin on 7 October 1900.
A few hours later he was able to produce an interpolation formula, which approaches
the Rayleigh-Jeans limit for lower frequencies ν and approaches the Wien limit for
high ν, with a smooth transition in between19:

ρ(ν, T ) = 8πν2

c3
hν

ehν/kBT − 1
.

In this formula kB is the Boltzmann constant of statistical mechanics and h is the
quantum of action that Planck had already introduced into the discussion in 1899 and

15Einstein (1913), p. 1078 (CPAE, vol. 4, doc. 23, transl. ed., p. 273).
16See Wien (1896). Wien’s b corresponds to h/k in our current nomenclature.
17On these efforts by Planck 1897–99, see Kangro (1970) pp. 93ff., Kuhn (1978) pp. 114ff. and
Gearhart in Hoffmann (2010) along with the primary literature cited there.
18See Kangro (1970) pp. 189ff., Kuhn (1978) pp. 144ff., Giulini (2011) and Chiao and Garrison
(2008) pp. 5–8.
19See Planck (1900a, 1943) and Kangro (1970) for a comparison with experiments from the time.
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For a number of years Planck believed that this 
formula was correct. He aMempted repeatedly 
to derive it out of fundamental electrodynamic 
and thermodynamic theorems, but it refused 
to work.
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A PUZZLING QUESTION

What has to do the ESHER’s figure below
with Poincaré, Minkowski and the photons? 

M.C. Escher’s Use of the Poincaré Models of Hyper-
bolic Geometry 
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Abstract 
The artist M.C. Escher was the first artist to create patterns in the hyperbolic plane. He used 
both the Poincaré disk model and the Poincaré half-plane model of hyperbolic geometry. 
We discuss some of the theory of hyperbolic patterns and show Escher-inspired designs in 
both of these models. 
 
 
1. Introduction 
 
The Dutch artist M.C. Escher was known for his geometric art and for re-
peating patterns in particular. Escher created a few designs that could be 
interpreted as patterns in hyperbolic geometry. Figure 1 is rendition of 
Escher’s best known hyperbolic pattern, Circle Limit III. Escher created 
his hyperbolic patterns by hand, 
 

 
 

Fig. 1. A computer rendition of the Circle Limit III pattern. 


